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Abstract. Artificial agents that interact with humans may find that understanding 

those humans' plans and goals can improve their interactions. Ideally, humans 

would explicitly provide information about their plans, goals, and motivations to 

the agent. However, if the human is unable or unwilling to provide this 

information then the agent will need to infer it from observed behavior. We 

describe a goal reasoning agent architecture that allows an agent to classify 

natural language utterances, hypothesize about a human’s actions, and recognize 

their plans and goals. In this paper we focus on one module of our architecture, 

the Natural Language Classifier, and demonstrate its use in a multiplayer 

tabletop social deception game, One Night Ultimate Werewolf. Our evaluation 

indicates that our system can obtain reasonable performance even when the 

utterances are unstructured, deceptive, or ambiguous. 

Keywords: Semantic classification, social deception game, tabletop game, goal 

reasoning 

1 Introduction 

Agents that interact with humans, cooperatively or competitively, can benefit from 

understanding those humans’ plans and goals. By having this information, the agent 

can more effectively assist a human teammate or thwart an adversarial human. While 

in some circumstances a human may directly and concisely provide its plans and goals, 

it is often more realistic that the agent will need to infer this information based on the 

human’s behavior. In this work, we consider a particular problem domain where 

humans do not unambiguously share this type of information, and will often attempt to 

intentionally conceal it through deception. 
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In this paper, we describe our architecture for an agent that classifies natural lan-

guage utterances to hypothesize about humans’ plans and goals. We have previously 

shown that such an agent can successfully predict squad members’ goals in a military 

domain (Gillespie et al., 2015). However, deploying the agent in a social deception 

game adds the following complexities: 

 Human cooperation:   

─ Military domain: The humans are squad members working in collaboration with 

the agent. 

─ Social deception game: The humans can be teammates of the agent but can also 

be neutral or adversaries. 

 Language:  

─ Military domain: The fixed-vocabulary language is highly constrained. 

─ Social deception game: There are minimal constraints on the language. 

 Clarity of utterances: 

─ Military domain: The utterances will be direct, concise, and unambiguous. 

─ Social deception game: The utterances may be incomplete, ambiguous, incorrect, 

or deceptive. Additionally, some utterances may have no relevance to the game 

(e.g., casual conversation among players). 

Although our focus has been on military scenarios and social deception games, the 

ability to reason about goals from natural language is also relevant in other domains 

such as those involving negotiations, diplomacy, and legal reasoning.  

While we describe the entire agent architecture in Section 2, our focus in this paper 

is on the module that allows the agent to classify the semantic meaning of each 

utterance. Section 3 provides an introduction to the social deception game we use, One 

Night Ultimate Werewolf, and Section 4 presents our approach for extracting 

information from in-game utterances. In Section 5, we describe an evaluation using 

logs of actual gameplay and show that the agent is able to classify several key aspects 

of each utterance.  We examine related work in Section 6 and present future research 

directions in Section 7. 

2 Agent Architecture 

Our agent interprets and responds to its environment via a five-step goal reasoning 

process (Klenk et al., 2013; Aha, 2015). This process allows an agent to dynamically 

refine its goals in response to unexpected external events or opportunities, and enact 

plans to accomplish those goals. The agent’s decision cycle is shown in Fig. 1 and has 

five primary components: 

1. Natural Language Classifier: This module listens for natural language utterances 

(i.e., spoken language) in the environment and attempts to extract semantic meaning 

from the utterances. For each utterance received, the module outputs a multi-label 

classification of the utterance. 



2. Explanation Generator: This module uses the classified utterances and 

environmental observations (i.e., the current state of the environment) to generate 

possible explanations for what has occurred in the environment (Molineaux and Aha, 

2015). The explanation contains, in part, the agent’s hypothesis as to what actions 

each other entity (e.g., humans, robots, or other agents) in the environment must 

have performed for the environment to have changed from its prior state to the 

current state. As more classified utterances and state observations are received, the 

Explanation Generator further refines its explanation. The most likely actions for 

each entity are output.  

3. Plan Recognizer: For each entity in the environment, the Plan Recognizer receives 

a sequence of actions that the entity may have performed (i.e., one action in the 

sequence every time the Explanation Generator produces output). The Plan 

Recognizer uses the sequence of actions to identify the entity’s plan (Vattam et al., 

2014). The Plan Recognizer assumes that each plan achieves a goal, so the 

recognized plan can be used to identify the entity’s current goal. This module outputs 

the recognized goal of each entity in the environment. 

4. Goal Selector: This module monitors for any changes in the goals of the entities or 

external events, and can modify the agent’s goal in response. This allows the agent 

to dynamically respond to any unexpected behaviors or opportunities (i.e., the agent 

changes its goal to better respond to other entities' goals). The output of this module 

is the agent’s goal (even if the goal is unchanged). 

5. Plan Generator: If the agent’s goal has changed, the Plan Generator generates a 

new plan for the agent to perform. The plan generator also monitors the progress of 

the current plan to determine if it is necessary to repair the plan or generate a new 

plan. The output of this module are the actions (of the plan) that the agent is 

attempting to perform. 

 

Figure 1: Decision cycle of the agent 



In this paper we focus exclusively on the Natural Language Classifier and how it 

generates classified utterances from unconstrained natural language. 

3 Background: One Night Ultimate Werewolf 

The domain we are examining is a tabletop social deception game called One Night 

Ultimate Werewolf 1  (Bezier Games, 2016). We chose Ultimate Werewolf because 

players interact using unconstrained natural language, have a variety of goals, work 

under hidden information, and actively engage in deception. 

In the game, players are randomly assigned roles that place them into three 

competing factions: Villagers, Werewolves, and the Tanner. The goal of the Villagers 

is to identify which players are Werewolves, the goal of the Werewolves is to avoid 

detection, and the goal of the Tanner is to convince the Villagers that it is a Werewolf. 

We constrained the game to five players and eight possible roles (i.e., five roles will be 

assigned and three will be unused), with some roles granting special abilities.  The roles 

we use are: Werewolf (x2), Mason (x2), Generic Villager (x2), Seer, and Tanner. The 

Werewolf roles are part of the Werewolves faction, the Tanner is part of the Tanner 

faction, and all remaining roles are part of the Villagers faction. The three unused role 

cards are placed, face down, on the table. 

The game proceeds as follows: 

1. Role assignment: Each player receives a role card with an assigned role printed on 

it. After viewing their role, the player then places the card face down in front of 

them. They may not view their card again2. 

2. Special abilities: An external moderator oversees this portion of the game: 

(a) The moderator instructs all players to close their eyes. 

(b) The moderator instructs all Werewolves to open their eyes, identify the other 

Werewolves (if any), and close their eyes. If only one Werewolf opens their eyes, 

they may look at one of the unused role cards. 

(c) The moderator instructs all Masons to open their eyes, identify the other Masons 

(if any), and close their eyes. 

(d) The moderator instructs the Seer to open their eyes. The Seer may look at the 

role card of one other player or two of the unused role cards. The Seer then closes 

their eyes. 

(e) The moderator instructs all players to open their eyes again. 

3. Information gathering: The players have several minutes to attempt to gather 

information about the other players. There is no turn-taking so players can speak as 

much or as little as they wish. Similarly, there are no constraints on what is discussed 

or the vocabulary used. 

                                                           
1 We will refer to the game as Ultimate Werewolf for the remainder of the paper. 
2 Although viewing your role again does not influence our game, in some versions of Ultimate 

Werewolf a player’s role can be switched without their knowledge. 



4. Shooting phase: Each player chooses one other player to “shoot” and players 

announce their choices simultaneously. The player who is shot by the most other 

players “dies”. In the event of a tie, all players tied for the most shots die. 

5. Declaring winners: 

(a) If the Tanner dies, the Tanner wins (regardless of which other players die). 

Otherwise, the Tanner loses. 

(b) If at least one Werewolf dies, the Villagers faction wins (regardless of the 

Tanner's fate). Otherwise, they lose. 

(c) If the Tanner does not die and no Werewolves die, the Werewolves faction wins. 

Otherwise, the Werewolves lose. 

Each player knows their own role and, depending on their special ability, may have 

more information as well (i.e., from special abilities). The Werewolves and Masons 

know information about other members of their faction; the Seer may know the role of 

any one other player; and a lone Werewolf or the Seer may know either 1 or 2 unused 

roles. Players with the Generic Villager role have no special abilities, so they have less 

information than other players. 

4 Multilabel and Multiclass Semantic Classification 

The Natural Language Classifier receives as input each natural language utterance that 

it can sense in the environment. Each utterance represents a continuous unit of speech 

with a distinct beginning and ending (e.g., “I think you are a werewolf.” or “Did you 

look at anyone’s role?”). Utterances are encoded using a bag-of-words representation. 

An utterance 𝑢 is a set containing each word 𝑤 in the utterance: 

 𝑢 =  {𝑤𝑎 , 𝑤𝑏 , … } 

For example, “I think you are a werewolf.” would be represented 

as  {′𝐼′, ′𝑡ℎ𝑖𝑛𝑘′, ′𝑦𝑜𝑢′, ′𝑎𝑟𝑒′, ′𝑎′, ′𝑤𝑒𝑟𝑒𝑤𝑜𝑙𝑓′}. We classify each utterance along nine 

different dimensions using a set of parallel classifiers. The classification tasks and their 

associated class labels are listed below: 

 Purpose: The general type of utterance being made. 

─ Classes: claim (make a factual claim), question (ask a question), hypothesis (pose 

a hypothesis), suggest-target (suggest a target to shoot), self-explain (explain the 

player’s behavior to the group), other (an utterance that does not fall under any of 

the other classes). 

 Address-type: The size of the group the utterance was addressed to. 

─ Classes: everyone (the utterance was directed at all or most of the players), one-

person, two-people  

 Addressee: Whether an utterance is directed to a specific player. This classification 

task is complementary to Address-type (i.e., a known Addressee only occurs when 

the Address-type is one-person or two-people). 

─ Classes: known (the utterance directly addresses one of the players), none (no 

specific player is addressed) 



 Subject: The subject matter discussed in the utterance. 

─ Classes: starting-role (a player’s role when they viewed their role card), unused-

role (roles that were not assigned to anyone), starting-role-group (a subgroup of 

possible roles for a player), role-observe-performer (whether a player has a role 

that allows the observation of other players’ roles), role-observe-target (whether 

a player had their role observed by another player), divulge (a player provides 

information about themselves to other players), statement (the utterance is in 

regards to a previously made statement), shoot-target (discusses targeting a player 

for shooting) 

 Target-role: The role being discussed in the utterance. 

─ Classes: none (no role is being discussed), unknown (a role is being discussed but 

the exact role is not known), Seer, Werewolf, Villager, Mason, Tanner. 

 Target-role-group: The subgroup of roles is being directly discussed. 

─ Classes: none, villagers, non-villagers, paired-roles (roles, either Masons or 

Werewolves, that can view the other members with the same role). 

 Target-player: The player being discussed in the utterance. 

─ Classes: known (directly referring to one of the players), unknown (a player is 

discussed but the exact player is unknown), none (no player is discussed).  

 Target-position: The presence and location of an unused role card on the table (e.g., 

a card viewed by the Seer, knowledge of an unused role because there were no other 

Werewolves). 

─ Classes: one-unknown (a role is unused but its position is unknown), two-

unknown (two roles are unused but their positions are unknown), three-unknown 

(three roles are unused but their positions are unknown), left (the leftmost unused 

role card), middle (the middle unused role card), right (the right unused role card), 

none (no unused role is mentioned). 

 Negation: Whether a statement is positive (e.g., something happened or is true) or 

negative (e.g., something did not happen or is not true). 

─ Classes: positive, negative 

4.1 Classifiers 

We examine three methods for training the classifiers used by the Natural Language 

Classifier: Frequency, Probabilistic, and Probabilistic Frequency. All three methods 

use a dictionary of known words. If there are 𝑁 known words, the dictionary 𝑑𝑖𝑐𝑡 will 

contain 𝑁 entries (𝑑𝑖𝑐𝑡 = 〈𝑤1, 𝑤2, … , 𝑤𝑁〉). Each utterance 𝑢 is filtered to remove stop 

words and converted to a vector 𝑣𝑢  of length  𝑁  (𝑣𝑢 = 〈𝑚1, 𝑚2, … , 𝑚𝑁〉 ). The ith 

element in 𝑣𝑢  (i.e., 𝑚𝑖 ) contains the multiplicity in the utterance of the ith element 

in 𝑑𝑖𝑐𝑡 (i.e., 𝑤𝑖). For example, if the 3rd word in the dictionary is ‘werewolf’ and the 

word ‘werewolf’ occurred in the utterance once, the 3rd element of 𝑣𝑢 would be 1. 

The three classification methods learn classification vectors from a set of labelled 

training utterances. Like the utterance vectors, the classification vectors are of length 

𝑁  (i.e., classification vector  𝑐𝑣 = 〈𝑠1, 𝑠2, … , 𝑠𝑁〉 ). For each classification task, the 

training examples are partitioned by class and one classification vector is learned for 

each class (e.g., for the Negation task the training examples are partitioned into one set 



with the positive label and one set with the negative label). The three methods generate 

classification vectors as follows: 

Frequency 

All utterance vectors from a partition are summed. If the utterance vectors from class 

𝐶 are in partition 𝑝𝐶 , classification vector 𝑐𝑣𝐶
𝑓𝑟𝑒𝑞

  for that class is: 

𝑐𝑣𝐶
freq

 = ∑ 𝑣𝑢𝑖

𝑣𝑢𝑖
∈𝑝𝐶

 

Since each utterance vector encodes the number of times each word appeared in the 

utterance, the classification vector contains the total number of times each word 

appeared for a given class.  

Probabilistic  

The Probabilistic classification vector 𝑐𝑣𝐶
𝑝𝑟𝑜𝑏

 is computed by dividing each element of 

the Frequency classification vector by the number of utterances in the partition: 

 𝑐𝑣𝐶
𝑝𝑟𝑜𝑏

=
𝑐𝑣𝐶

𝑓𝑟𝑒𝑞

|𝑝𝐶|
 

This classification vector represents what percentage of utterances in the partition 

contained each word. 

Probabilistic Frequency  

The Probabilistic Frequency classification vector 𝑐𝑣𝐶
𝑝𝑓

 is calculated using both the 

Frequency and Probabilistic classification vectors. A new classification vector is 

created such that the ith element is the product of the ith elements in the Frequency and 

Probabilistic classification vectors: 

 𝑐𝑣𝐶
𝑝𝑓

= 〈𝑠𝐶,1
𝑓𝑟𝑒𝑞

× 𝑠𝐶,1
𝑝𝑟𝑜𝑏

, 𝑠𝐶,2
𝑓𝑟𝑒𝑞

× 𝑠𝐶,2
𝑝𝑟𝑜𝑏

, … , 𝑠𝐶,𝑁
𝑓𝑟𝑒𝑞

× 𝑠𝐶,𝑁
𝑝𝑟𝑜𝑏

〉 

4.2 Classification 

An input utterance is classified by the Natural Language Classifier using the learned 

classification vectors. If a classification task l has a set of possible labels 𝒞𝑙, the Natural 

Language Classifier computes the dot product between the utterance vector and each 

of the classification vectors for that classification task (e.g., to find the Negation 

classification, only the classification vectors for the positive and negative classes are 



used). The associated label of the classification vector that maximizes that value is 

assigned to the utterance:  

 𝑙𝑎𝑏𝑒𝑙𝑙 = argmax
𝐶𝑖∈𝒞𝑙

𝑣𝑢 ∙ 𝑐𝑣𝐶𝑖
 

In the Ultimate Werewolf domain, nine labels are assigned to each input utterance.  

5 Evaluation 

In our empirical evaluation we assess whether the agent can correctly classify natural 

language utterances using multilabel and multiclass semantic classification. Using data 

from real games of Ultimate Werewolf, our results show that our agent can extract 

important semantic information from utterances without limiting the language of 

players. 

5.1 Data Collection 

We collected data from eight games of Ultimate Werewolf, with each game being 

played by five human players. The same five players participated in all eight games. In 

addition to the rules described in Section 3, the players were also encouraged to use 

proper names when referring to each other. This was done because the agent only has 

access to the audio of the game (i.e., it cannot see who a player is facing when 

speaking). However, this was not strictly enforced so there are instances where the 

players use pronouns. No other limitations were placed on vocabulary, utterance 

structure, conversation ordering, or topics of discussion. 

Audio was recorded for each game along with the players’ roles, special ability 

actions (e.g., if they viewed another player’s role), and shooting targets. Each recording 

was manually transcribed and separated into the individual utterances. The mean 

number of utterances per game was 49.1, with a minimum of 36 and a maximum of 69. 

Each utterance was manually labelled for each of the nine classification tasks. The 

labelling was done by a third party (i.e., not the players themselves), so it represents 

how an external observer would classify each utterance rather than a player’s intended 

meaning (e.g., how the observer interpreted ambiguous statements). 

5.2 Experimental Setup 

Evaluation was performed using leave-one-out testing (i.e., each run used seven 

annotated game transcripts for training and one for testing). The utterances from the 

testing transcript were given as input to the agent. The performance of the agent (i.e., 

how well its classification matched the annotated classes of the utterance) was 

measured for each of the nine classification tasks. We used the F1 score to measure 

performance (𝐹1 = 2 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
). The three classification methods described in 

Section 4 were evaluated: Frequency, Probabilistic, and Probabilistic Frequency. The 



results from these three classification approaches were also compared to a baseline that 

randomly classifies each utterance (referred to as Random in our results). 

5.3 Results 

The results for each of the nine classification tasks and the overall performance are 

shown in Fig. 2 and Fig. 3. The Probabilistic and Probabilistic Frequency approaches 

outperformed the baseline over all classification tasks and outperformed the Frequency 

approach over all tasks except Target-role-group (i.e., all three approaches achieved 

similar results for this task). Other than the Target-role task (where Probabilistic 

Frequency performed better), and Purpose and Target-role-group (where they 

performed similarly), the Probabilistic method outperformed the Probabilistic 

Frequency method. The Frequency approach performed poorly, underperforming the 

Random baseline in six of the classification tasks and recording a lower average F1-

score. 

 

Figure 2: Classification performance for the Purpose, Address-type, Addressee, Subject, and 

Target-role tasks 

5.4 Discussion 

The classification tasks have between two and eight classes each (with a median of 4). 

We observed an inverse correlation between the number of classes and agent 

performance. The two classification tasks that do not follow this inverse correlation are 

the Target-role and Target-role-group tasks. Target-role has seven classes but the agent 

performed better than expected on this task. The primary reason for this is because the 

utterances contain keywords (i.e., the name of the role) that make them easy to classify. 

In contrast, the agent performed poorly on the Target-role-group task, which has only 

four classes. This is because the agent has difficulty determining if an utterance is 

explicitly discussing one of the groups or only implicitly referencing the group by 



mentioning one of the roles in that group. This is especially prevalent since the players 

use group names that are similar to role name. For example, “I think you are one of the 

villagers” would be classified as villagers (i.e., it discusses the villagers group) whereas 

“I think you are the Villager” would be classified as none (i.e., a role is discussed, not 

an entire group). 

 

Figure 3: Classification performance for the Target-role-group, Target-player, Target-

position, Negation, and Overall tasks 

The classes are highly imbalanced given the wide range of possible utterances. In 

our dataset, between 45% and 96% of utterances belong to the majority class (𝜇 = 69%) 

and between 0.5% and 28% of the utterances belong to the least frequent class (𝜇 = 

7%). While this imbalance affects all three classification methods, it is the primary 

reason the Frequency method performs poorly. For each class, the Frequency method 

counts the number of times each word appears in the training examples. This causes 

classes with more training examples (i.e., the majority class) to have higher frequency 

values and therefore be more likely to be the labelled class of an input utterance. Even 

if a specific word is a strong indication that an utterance should be labelled as the 

minority class, if that word appears occasionally in the majority class it can cause the 

classifier to label the utterance as the majority class. The Probabilistic and Probabilistic 

Frequency approaches help mitigate the class imbalance problem by taking into account 

the percentage of training examples that contain each word rather than just the number 

of times a word occurs. However, as with the Frequency approach, they also suffer from 

having very few training examples for some classes (e.g., some classes only have a 

single example in the dataset).  Additionally, some classes have such a wide range of 

different utterances (e.g., non-game talk amongst the players) that it makes it difficult 

to learn a model for that class even if a significant number of examples are available. 

Our results, while an improvement over the baseline, fall well short of ideal 

performance. Given the difficulty of the problem (i.e., unconstrained text, rapid changes 



in topics, highly unbalanced data, ambiguity), we expected the agent to have difficulty 

classifying the utterances but are unsure what performance is necessary for the 

remaining components (i.e., how erroneous the classifications can be before the 

Explanation Generator and Plan Recognizer fail). Even for a human annotator, the 

utterances were often highly ambiguous and difficult to classify. While the agent should 

ideally accurately predict all nine categories, it may be possible that the remaining 

modules can achieve reasonable results even if only a subset of each utterance’s 

classifications are correct. We intend to investigate the system’s sensitivity to 

classification performance in future work. 

As was shown in our results, the Probabilistic method achieved the best performance 

on most tasks but Probabilistic Frequency performed best on the Target-role 

classification task. This indicated that it will likely be necessary to determine the best 

performing classification strategy on each task or use an ensemble approach rather than 

committing to a single strategy for all tasks. Given our current level of performance, 

this will also necessitate exploring new classification approaches and taking steps to 

manage the class imbalance problem (e.g., collect more data, balance the dataset, use 

label regularization (Mann and McCallum, 2007)). 

6 Related Work 

Our work focuses on utterance classification in a game where the players often engage 

in deception. Although we do not attempt to identify which utterances or players are 

deceptive, related work in deception detection often addresses similar problems. De-

ception detection in conversational games has been approached using textual cues 

(Zhou and Sung, 2008) (e.g., word selection, utterance duration, utterance complexity), 

vocal cues (Chittaranjan and Hung, 2010) (e.g., pitch, pauses, laughter), and visual cues 

(Raiman et al., 2011) (e.g., head and arm movements). These systems are designed to 

classify players as truthful or deceptive, and use that information to identify players 

with deceptive roles (e.g., werewolves). However, while collecting experimental data 

we observed that even players with roles that should not require deception (e.g., villag-

ers) actively engage in deception and omission. Since nearly all players engage in de-

ception, it becomes more important to identify when they are being deceptive and why 

they are being deceptive. 

Network analysis has been used to identify groups of players with similar patterns 

of behavior (Yu et al., 2015). The statements made by each player are used to determine 

their attitudes toward other players (e.g., a positive attitude if they regularly defend 

another player or a negative attitude if they regularly accuse another player) and players 

are clustered based on their attitudes. The underlying assumption is that deceptive play-

ers will have positive attitudes toward other deceptive players while having negative 

attitudes toward other players. In our domain, even the most common roles (e.g., Were-

wolf, Mason, Generic Villager) only have at most two players with those roles. If a 

player knows of another player with the same role (i.e., using a special ability), they 

often avoid displaying a positive attitude toward that player since it can arouse suspi-

cion.  



Azaria et al. (2015) have developed an agent that is able to identify deception, con-

vince other players of the deception, and avoid raising suspicions about their own be-

havior. The agent participates in a simplified social deception game where a single pi-

rate has to deceive three non-pirates in order to steal treasure. The primary differences 

between their work and our own are that their game uses structured sentences rather 

than free text, the game is less complex (i.e., fewer roles and player goals), and their 

system is focused on identifying deception rather than a player’s plan or role.  

Orkin and Roy (2010) use sequences of utterances and actions to predict a player’s 

behavior in a restaurant simulation game. Due to the number of utterances possible 

using free-form text, they had relatively poor performance when training with 8-10 

game logs compared to 30-100 game logs. This is similar to our own evaluation where 

many of the classes had few training instances. They found that increasing the number 

of training logs increased performance but required significant annotation time (ap-

proximately 56 hours). In the AutoTutor Intelligent Tutoring System (Olney et al., 

2003), utterances are used to determine when initiative has changed and determine the 

needs of the student. For example, certain utterances indicate the student has switched 

from providing responses to being stuck or asking questions. This can be thought of as 

a simplified version of plan recognition, where the student has three plans: respond, ask 

questions, or do nothing. However, only a single utterance is used for each classifica-

tion, rather than the entire sequence of utterances. 

Vázquez et al. (2015) have studied the reaction of human players when a robotic 

player participates in a social deception game. The robot has the appearance of auton-

omy but is actually controlled by an unseen human. Although this differs from our own 

goal of an autonomous player, it does demonstrate that humans are open to playing 

social deception games with robotic participants. 

7 Conclusions and Future Work 

We described our architecture for an agent that uses unstructured natural language 

utterances to reason about the plans and goals of humans. In this paper, we focus on 

one module of this architecture, the Natural Language Classifier, and examine its ability 

to classify utterances in a multiplayer tabletop social deception game. Our previous 

work (Gillespie et al., 2015) described the application of our agent architecture in a 

military domain. However, in this paper we chose to examine a social deception game 

because it posed several interesting challenges, including less constrained language, 

deception, and ambiguity. 

 The Natural Language Classifier extracts information from each utterance by 

assigning labels according to nine distinct classification tasks. We studied its ability 

using three supervised learning methods for these tasks. We evaluated it in the social 

deception game Ultimate Werewolf using logs of eight games played by human players. 

We found that classification that considers only word frequency performed poorly, 

whereas the other two classification methods achieved reasonable results and 

outperformed our baseline. 



Our principal area of future work is to integrate the Natural Language Classifier 

with the other components of the agent architecture and evaluate the agent’s overall 

performance. We performed such an evaluation in a military domain, but performing 

this integration for Ultimate Werewolf will require a better understanding of the mini-

mum performance necessary during utterance classification. Currently, we have a lim-

ited corpus of training data that was collected from a single set of players. Different 

players are likely to use different utterances and a different vocabulary, so it will be 

important to collect data from a variety of players. Additionally, we plan to allow the 

agent to observe games of Ultimate Werewolf and make predictions about player 

roles, identify deception, and learn the motivations of individual players. 
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